Table - Putative global minima of (C60)N for N <= 150 with the Girifalco potential.

Click a number to obtain the Cartesian coordinates of the corresponding structure (xyz format, unit of distance is sigma*1.2)
Or click here for a tar file of all the structures. Click here for a link to the Cambridge Cluster Database for N <= 80.

I - icosahedron; D - decahedron; F - face-centered cubic; T - tetrahedron; cp - close packed;m (I, D, F, T)  means the size of the basic tetrahedron; "+" means a small anti layer. See Ref. [3] for more details.

N

Motif

Energy /ε

 Ref.


N

Motif

Energy /ε

Ref.

13a

2I

-38.19422

 1


81

cp

-363.39167

3

13b

3D

-37.82724



82

5D

-367.95573

3

13c

cp

-37.18261



83

cp

-372.93606

3

13d

5F

-37.17560


84

cp

-377.46702

3

14

3D

-41.96327

 1


85

cp

-382.74932

3

15

3D

-46.12082

 1


86

cp

-388.96742

3

16

3D

-50.27908

 1


87

cp

-393.45342

3

17

3D

-54.43807

 1


88

cp

-398.51391

3

18

3D

-58.61860

 1


89

7T

-403.19843

3

19

3D

-62.69319

 1


90

7T

-408.48626

3

20

3D

-66.76531

 1


91

6T

-414.78707

3

21

3D

-70.94720

 1


92

6T

-419.02258

3

22

3D+

-75.10984

 1


93

cp

-424.29729

3

23

3D+

-79.94459

 1


94

cp

-429.58114

3

24

cp

-84.15632

 1


95

6D

-435.25097

3

25

3D+

-88.65488

 1


96

6D

-439.64423

3

26

cp

-93.64506

 1


97

6D

-445.12137

3

27

cp

-97.79501

 1


98

6T

-450.80553

3

28

3D+

-102.00457

 1


99

6D

-456.48250

3

29

4D

-106.76009

 1


100

6T

-462.47150

3

30

4D

-111.01253

 2


101

6D

-468.14156

3

31

4D

-116.18632

 1


102

6D

-472.53236

3

32

4D

-120.40840

 1


103

6D

-477.78639

3

33

4D

-125.64079

 1


104

6D

-483.04604

3

34

4D

-129.85597

 1


105

6D

-487.43349

3

35

4D

-135.08309

 1


106

6D

-492.68505

3

36

4D

-139.28793

 1


107

6D

-497.94228

3

37

4D

-144.50652

 1


108

6D

-504.11629

3

38

7F

-150.57142

 1


109

6D

-508.52965

3

39

7F

-154.73966

 1


110

6D

-513.79794

3

40

7F

-158.90827

 1


111

6D

-519.07223

3

41

7F+

-163.30689

 1


112

6D

-525.25152

3

42

7F+

-167.54706

 1


113

6D

-530.65554

3

43

cp

-172.72057

 1


114

6D

-535.03806

3

44

cp

-176.98163

 1


115

6D

-540.28593

3

45

cp

-182.23770

 1


116

7T

-546.18650

3

46

cp

-186.57956

 1


117

6D

-551.78912

3

47

cp

-191.67458

 1


118

6D

-556.19588

3

48

4D+

-197.42965

 1


119

6D

-561.45971

3

49

4D+

-201.67320

 1


120

cp

-567.18749

3

50

cp

-207.66680

 1


121

6D

-572.92263

3

51

cp

-211.93865

 1


122

6D

-578.30520

3

52

cp

-217.20635

 1


123

6D

-582.67900

3

53

cp

-221.47836

 1


124

11F+

-588.26419

3

54

5D

-226.78155

 1


125

7T

-593.87840

3

55

5D

-231.07316

 1


126

6D

-599.43738

3

56

5D

-236.31745

 1


127

6D

-603.83666

3

57

5D

-241.56727

 1


128

11F+

-609.36823

3

58

4T

-246.29744

 1


129

6D

-614.36181

3

59

5T

-252.34541

 1


130

6D

-620.56945

3

60

5T

-256.54382

 1


131

6D

-625.93052

3

61

8F

-261.61957

 1


132

11F

-630.46268

3

62

5T

-265.93257

 2


133

6D

-635.52924

3

63

5D

-271.27774

 1


134

7T

-641.57421

3

64

5D

-277.44388

 1


135

6D

-647.06070

3

65

5D

-281.76524

 1


136

11F

-651.56821

3

66

5D

-286.97355

 1


137

cp

-657.04688

3

67

5D

-292.19006

 1


138

cp

-661.97084

3

68

8F+

-296.74668

 1


139

6D

-668.19136

3

69

5D

-301.72964

 1


140

6D

-673.52303

3

70

5D

-307.08892

 1


141

cp

-678.35133

3

71

5D

-313.26322

 1


142

6D

-683.76697

3

72

5D

-317.52213

 1


143

cp

-689.99901

3

73

5D

-322.78073

 1


144

6D

-694.71108

3

74

5D

-328.21873

 1


145

6D

-700.01089

3

75

5D

-334.39505

 1


146

6D

-706.32072

3

76

5D

-338.63307

 1


147

cp

-711.09825

3

77

5D

-343.87696

 1


148

6D

-715.81139

3

78

5D

-348.11241

 1


149

cp

-721.28425

3

79

cp

-353.84742

 1


150

7D

-726.31754

3

80

cp

-358.12173

 1


 

 

 


 

References:

[1]J.P.K. Doye, D. J. Wales, The structures of (C60)N clusters. Chem. Phys. Lett., 262, 167-174 (1996).

[2] W.S. Cai, Y. Feng, X.G. Shao, Z.X. Pan, Global optimization of (C60)N molecular clusters. Chem. Phys. Lett., 359, 27-34 (2002).

[3] L.J. Cheng, W.S. Cai, X.G. Shao, Geometry optimization and Conformational analysis of (C60)N clusters using a dynamic lattice searching method. ChemPhysChem, 6, 261-266 (2005).

上一条:碳原子簇的稳定结构 下一条:Ag原子簇的稳定结构(N=2-80, Sutton Chen potential, Gupta potential)

关闭